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Abstract

The present paper investigates the sensitivity analysis, with respect to right-hand source

term perturbations, of a scalar Tresca-type problem. This simplified, but nontrivial, model

is inspired from the (vectorial) Tresca friction problem found in contact mechanics. The

weak formulation of the considered problem leads to a variational inequality of the second

kind depending on the perturbation parameter. The unique solution to this problem is then

characterized by using the proximal operator of the corresponding nondifferentiable convex

integral friction functional. We compute the convex subdifferential of the friction functional

on the Sobolev space H1(Ω) and show that all its subgradients satisfy a PDE with a boundary

condition involving the convex subdifferential of the integrand. With the aid of the twice

epi-differentiability, concept introduced and thoroughly studied by R.T. Rockafellar, we show

the differentiability of the solution to the parameterized Tresca-type problem and that its

derivative satisfies a Signorini-type problem. Some numerical simulations are provided in

order to illustrate our main theoretical result. To the best of our knowledge, this is the first

time that the concept of twice epi-differentiability is applied in the context of mechanical

contact problems, which makes this contribution new and original in the literature.

Keywords: Tresca-type problem; Signorini-type problem; variational inequality; convex subdif-

ferential; proximal operator; sensitivity analysis; twice epi-differentiability.
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1 Introduction

Mechanical context. Contact and friction phenomena with deformable bodies are increasingly

taken into account in industrial models and engineering applications. We can cite for example:

wheel-ground contact analysis in aeronautics, assemblies of mechanical processes, modeling of

medical prostheses, etc. In general the mechanical setting consists in a deformable body which is

in contact with a rigid foundation. The elastic body is deformed under some volume forces and

surface tractions without penetrating the rigid foundation. Usually the mathematical models of
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these mechanical contact problems lead to nonlinear boundary value problems, including unilateral

(possibly nonsmooth) constraints, where the unknowns are the displacement and the stress field.

The corresponding weak mathematical formulations are expressed as variational inequalities of the

first or second kind. These variational formulations are usually used to prove existence, uniqueness,

regularity of solutions as well as for numerical purposes.

The so-called Signorini problem is a mechanical contact problem without friction. It consists in

finding the equilibrium configuration of an elastic body in a frictionless contact with a rigid surface.

This problem was first formulated by A. Signorini [33] in 1933, and later in 1959 in the paper [34].

In 1963, G. Fichera proved in [12] the existence and uniqueness of the solution to the Signorini

problem by minimizing the corresponding quadratic potential energy functional. Signorini’s laws

are expressed as complementarity relations and translate the non-penetrability of the contact zone

on the obstacle, the non-appearance of traction forces on the contact zone and the complementarity

of normal forces and displacements. The weak formulation of the Signorini problem can be recast

into a variational inequality of the first kind and the literature is abundant on both theoretical

and numerical aspects on this subject. Comprehensive references in this field include [3, 4, 21, 31].

When dealing with frictional contact problems of deformable bodies, a Coulomb friction model

was studied by G. Duvaut and J.-L. Lions [10]. The main difficulty of this model comes from the

fact that the friction functional depends on the normal stress of the unknown displacement, which

leads to a nonvariational problem. The Tresca model can be seen as a simplified Coulomb friction

law with a given friction bound or threshold (see, e.g., [10]). It can be considered as a first step

towards the treatment of the more complicated mathematical formulation of the Coulomb friction

law. The weak formulation of the Tresca friction problem is a variational inequality of the second

kind involving a nondifferentiable convex integral friction functional. For more details about the

formulations of the Tresca and Coulomb models, we refer the reader to [10, 20, 32].

Motivations. In general optimization theory, the sensitivity analysis of the state with respect to

given parameters plays a fundamental role in order to formulate necessary optimality conditions or

for numerical purposes (for the implementation of gradient descent methods for example). When

we started this collaboration, our primary motivation was shape optimization problems, that is

determining the optimal design of a given object for industrial or engineering applications, involving

mechanical contact and friction phenomena. We gradually unrolled all the underlying issues that

allow us to prepare the ground for the treatment of such problems. In particular dealing with the

sensitivity analysis of the state of such problems is a difficult task due to the unilateral (possibly

nonsmooth) character of the models mentioned in the previous paragraph.

The aim of the present work is to provide an original methodology based on mathematical tools

from convex and variational analyses in order to deal with the sensitivity analysis of a Tresca-type

problem with respect to right-hand source term perturbations. Precisely, in this paper, we focus

on a scalar version of the (vectorial) Tresca friction problem. This scalar version can be found

in previous works such as [14, Section 5 Chapter 2], [15, Section 1.3 Chapter 1] or more recently

in [16, Chapter 5] and [35, Chapter 9]. Hence the present work constitutes a nontrivial first step

towards the treatment of the (vectorial) Tresca friction problem found e.g. in [10]. In the whole

paper, by analogy with this model in contact mechanics, we decided to refer to the considered

problem as “Tresca-type problem”. Note that we will be using later a similar terminology by using

“Signorini-type problem”.
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In this paper we deal with the scalar Tresca-type problem given by{
−∆u+ u = f in Ω,

|∂nu| ≤ 1 and u∂nu = − |u| on Γ,
(TP)

where Ω ⊂ Rd is a nonempty bounded connected open subset of Rd, d ∈ N∗ (where N∗ stands

for the set of positive integers), with a Lipschitz continuous boundary Γ := ∂Ω and f ∈ L2(Ω).

Considering that the right-hand source term f is perturbed and replaced by ft ∈ L2(Ω), where t ≥ 0

is a parameter, our aim is to study the differentiability at t = 0 of the unique solution ut to the

parameterized problem (obtained by replacing f with ft, see Problem (TPt) below) and to express

its derivative, denoted by u′0, as the unique solution to a new boundary value problem.

Main result. The main result of this paper claims that, for a given right-hand source term

ft ∈ L2(Ω) depending on a parameter t ≥ 0, the map t ≥ 0 7−→ ut ∈ H1(Ω), where ut stands for

the unique solution to the parameterized Tresca-type problem{
−∆ut + ut = ft in Ω,

|∂nut| ≤ 1 and ut∂nut = − |ut| on Γ,
(TPt)

is differentiable at t = 0, and its derivative u′0 ∈ H1(Ω) is the unique solution to the Signorini-type

problem 

−∆u′0 + u′0 = f ′0 in Ω,

∂nu
′
0 = 0 on Γu0

N ,

u′0 = 0 on Γu0

D ,

u′0 ≤ 0, ∂nu
′
0 ≤ 0 and u′0∂nu

′
0 = 0 on Γu0

S−,
u′0 ≥ 0, ∂nu

′
0 ≥ 0 and u′0∂nu

′
0 = 0 on Γu0

S+,

(SP′
0)

where the decomposition of the boundary Γ = Γu0

N ∪ Γu0

S− ∪ Γu0

D ∪ Γu0

S+ depends on u0 (see Theo-

rem 3.16 for details). This result, proved under some appropriate assumptions, establishes a direct

link between scalar Tresca-type and Signorini-type problems. Precisely, in our context, it empha-

sizes the fact, roughly speaking, that solutions to Signorini-type problems can be considered as

first-order approximations of perturbed solutions to Tresca-type problems in the following sense:

for small values t > 0, the function ut can be approximated in H1-norm by u0+ tu
′
0. Such approxi-

mations are numerically computed on some explicit examples at the end of the present manuscript

for an illustrative purpose of the main theoretical result.

Methodology. Our methodology is based on mathematical tools from convex analysis. First,

the weak formulation of Problem (TPt) is given by the following variational inequality of the second

kind ∫
Ω

∇ut · ∇(φ− ut) +

∫
Ω

ut(φ− ut) + Φ(φ)− Φ(ut) ≥
∫
Ω

ft(φ− ut),

for all φ ∈ H1(Ω), where Φ stands for the Tresca-type functional (which is a proper lower semi-

continuous and convex function) given by

Φ : H1(Ω) −→ R

w 7−→ Φ(w) :=

∫
Γ

|w| .
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It follows that the unique solution to Problem (TPt) can be expressed in terms of Moreau’s proximal

operator proxΦ of Φ (see [24, 25] and Section 2.2 for some reminders) as

ut = proxΦ(Ft),

for all t ≥ 0, where Ft ∈ H1(Ω) stands for the unique solution to the classical Neumann problem∫
Ω

∇Ft · ∇φ+

∫
Ω

Ftφ =

∫
Ω

ftφ,

for all φ ∈ H1(Ω). Hence the differentiability of the map t ≥ 0 7−→ ut ∈ H1(Ω) at t = 0 is related to

the differentiability (in a generalized sense) of the proximal operator proxΦ. To this aim we use an

approach based on the notion of twice epi-differentiability introduced by R.T. Rockafellar in [28]

and characterize the derivative u′0 ∈ H1(Ω) in terms of the proximal operator of the second-order

epi-derivative d2eΦ of Φ, precisely as

u′0 = proxd2
eΦ(u0|F0−u0)(F

′
0).

We finally prove that the above equality also characterizes the unique solution to the Signorini-type

problem (SP′
0).

Additional comments. Our main result is based on the assumption of twice epi-differentiability

of the Tresca-type functional Φ. Some sufficient conditions on u0 and Γ are provided in Re-

mark 3.18 and Appendix B in order to satisfy this hypothesis. The general setting of the twice

epi-differentiability of Φ over the Sobolev space H1(Ω) remains an open challenge.

In order to illustrate our main theoretical result we provide some numerical simulations. The idea

is to solve numerically the above parameterized Tresca-type problem (TPt) for small values t ≥ 0

and the Signorini-type problem (SP′
0). Then we compare in H1-norm the function ut with its

first-order approximation u0 + tu′0. In order to approximate the Signorini-type problem, we use

the iterative switching algorithm introduced by J.M. Aitchison and M.W. Poole in [2], due to its

simplicity and to its advantage to be used in combination with other numerical methods with

minimal coding development. Then we propose a revisited iterative switching algorithm for the

numerical resolution of the parameterized Tresca-type problem.

For simplicity, in this paper, the boundary condition in the Tresca-type problem (TPt) has a

constant friction threshold equal to 1. In our opinion no difficulty would arise by extending

our approach to a general friction threshold g ∈ L2(Γ) with g ≥ 0. Nevertheless an interesting

perspective for further research works is to consider a perturbed friction threshold gt ∈ L2(Γ)

depending on the parameter t ≥ 0. In that situation the Tresca-type functional Φt would also be

perturbed and the treatment would require some special adjustments in the definition of the twice

epi-differentiability (see [1] for more details).

Organization of the paper. The paper is organized as follows. In Section 2, some useful def-

initions and results from convex analysis are recalled. We focus especially on the notion of twice

epi-differentiability which plays a crucial role in the present paper. In Section 3, we provide all

necessary ingredients in order to prove our main result, which claims that the derivative of the

parameterized Tresca-type problem satisfies Signorini’s conditions. Numerical simulations are pro-

vided in Section 4 for illustration of the main theoretical result. Concluding remarks are presented
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in Section 5. Finally some technical details are provided in the Appendices. In Appendix A, a

classical result on the extension of linear operators is recalled. In Appendix B, we provide some

sufficient conditions that guarantee the twice epi-differentiability of the Tresca-type functional.

Appendix C is devoted to some details concerning the numerical algorithms used in Section 4.

2 Basics of convex analysis and twice epi-differentiability

This section is dedicated to recall different basic convex analysis and twice epi-differentiability

results useful in Section 3 in order to establish the main result (Theorem 3.16). In this section

we denote by R := R ∪ {−∞,+∞} and by H a given real Hilbert space endowed by the scalar

product ⟨·, ·⟩H and the associated norm ∥ · ∥H. The notation Id : H → H stands for the usual

identity map. Finally, in the whole section, all limits with respect to τ > 0 will be considered

for τ → 0+. For the ease of notations, when no confusion occurs, the notation τ → 0+ will be

omitted.

2.1 Mosco epi-convergence

Let (Sτ )τ>0 be a parameterized family of subsets of H. The outer, weak-outer, inner and weak-

inner limits of (Sτ )τ>0 when τ → 0+ are respectively defined by

lim supSτ := {x ∈ H | ∃(tn)n → 0+, ∃(xn)n → x, ∀n ∈ N, xn ∈ Stn},

w-lim supSτ := {x ∈ H | ∃(tn)n → 0+, ∃(xn)n ⇀ x, ∀n ∈ N, xn ∈ Stn},

lim inf Sτ := {x ∈ H | ∀(tn)n → 0+, ∃(xn)n → x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn},

w-lim inf Sτ := {x ∈ H | ∀(tn)n → 0+, ∃(xn)n ⇀ x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn},

where → (respectively ⇀) denotes the strong (respectively weak) convergence in H. Note that the

four inclusions

lim inf Sτ ⊂ lim supSτ ⊂ w-lim supSτ and lim inf Sτ ⊂ w-lim inf Sτ ⊂ w-lim supSτ ,

always hold true.

Definition 2.1 (Mosco-convergence). A parameterized family (Sτ )τ>0 of subsets of H is said to

be Mosco-convergent if

w-lim supSτ ⊂ lim inf Sτ .

In that case we write M-limSτ := lim inf Sτ = lim supSτ = w-lim inf Sτ = w-lim supSτ .

The domain and the epigraph of an extended real-valued function Φ : H → R defined on H are

respectively given by

dom(Φ) := {x ∈ H | Φ(x) < +∞} and Epi(Φ) := {(x, λ) ∈ H× R | Φ(x) ≤ λ}.

Recall that the set of all epigraphs on H is stable under outer and inner limits (see, e.g., [30,

p.240]).
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Definition 2.2 (Mosco epi-convergence). A parameterized family (Φτ )τ>0 of extended real-valued

functions defined on H is said to be Mosco epi-convergent if (Epi(Φτ ))τ>0 is Mosco-convergent.

In that case, we denote by ME-limΦτ : H → R the extended real-valued function defined on H

characterized by its epigraph as follows:

Epi(ME-limΦτ ) := M-limEpi(Φτ ).

Recall the following characterization of Mosco epi-convergence. We refer for instance to [5, Propo-

sition 3.19 p.297] or [30, Proposition 7.2 p.241] for details.

Proposition 2.3. Let Φ be an extended real-valued function defined on H and let (Φτ )τ>0 be a

parameterized family of extended real-valued functions defined on H. Then (Φτ )τ>0 Mosco epi-

converges with Φ = ME-limΦτ if and only if, for all x ∈ H, there exists (xτ )τ>0 → x such that

lim supΦτ (xτ ) ≤ Φ(x) and, for all (xτ )τ>0 ⇀ x, lim inf Φτ (xτ ) ≥ Φ(x).

2.2 Some basics of convex analysis

The domain and the graph of a set-valued map A : H ⇒ H are respectively given by

D(A) := {x ∈ H | A(x) ̸= ∅} and Gr(A) := {(x, y) ∈ H×H | y ∈ A(x)}.

We denote by A−1 : H ⇒ H the set-valued map defined by

A−1(y) := {x ∈ H | y ∈ A(x)},

for all y ∈ H. For all x, y ∈ H, note that y ∈ A(x) if and only if x ∈ A−1(y). The range of A is

given by

R(A) := {y ∈ H | A−1(y) ̸= ∅} = D(A−1).

Let A, B : H ⇒ H be two set-valued maps. The sum A+B : H ⇒ H is defined by

(A+B)(x) := {yA + yB | yA ∈ A(x), yB ∈ B(x)},

for all x ∈ H. Finally, a set-valued map A : H ⇒ H is said to be single-valued if A(x) is a singleton

for all x ∈ H. In that case, it holds in particular that D(A) = H and we write A : H → H (instead

of A : H ⇒ H, by identifying A to a standard map).

A set-valued map A : H ⇒ H is said to be monotone if

∀(x1, y1), (x2, y2) ∈ Gr(A), ⟨y2 − y1, x2 − x1⟩H ≥ 0.

Moreover A is said to be maximal monotone if Gr(A) ⊂ Gr(B) for some monotone set-valued map

B : H ⇒ H implies that A = B. From Minty’s theorem (see, e.g., [23]), it is well-known that a

monotone operator A : H ⇒ H is maximal if and only if R(Id +A) = H.

In what follows, as usual in the literature, we denote by Γ0(H) the set of all extended real-valued

functions Φ : H → R∪{+∞} with a nonempty closed convex epigraph. Let Φ ∈ Γ0(H). We denote

by ∂Φ : H ⇒ H the subdifferential operator of Φ defined by

∂Φ(x) := {y ∈ H | ∀z ∈ H, ⟨y, z − x⟩H ≤ Φ(z)− Φ(x)},
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for all x ∈ H. Moreover we denote by proxΦ : H ⇒ H the proximal operator (also well-known as

proximity operator) of Φ defined by

proxΦ := (Id + ∂Φ)−1.

Recall that ∂Φ is a maximal monotone operator (see, e.g., [27] or [30, Theorem 12.17 p.542] for

details). As a consequence it can be easily deduced that proxΦ : H → H is a single-valued map.

We conclude this section by noting that if Φ = IK is the indicator function of a nonempty closed

convex subset K of H, that is, Φ(x) = 0 if x ∈ K, and Φ(x) = +∞ otherwise, then Φ ∈ Γ0(H)

and ∂Φ = NK coincides with the classical normal cone of K (in the sense of convex analysis)

and proxΦ = projK coincides with the classical projection operator onto K.

2.3 Twice epi-differentiability

For a given Φ ∈ Γ0(H), we define the following second-order difference quotient functions by

∆2
τΦ(x|y) : H −→ R ∪ {+∞}

z 7−→ ∆2
τΦ(x|y)(z) :=

Φ(x+ τz)− Φ(x)− τ⟨y, z⟩H
τ2

,

for all τ > 0, x ∈ dom(Φ) and y ∈ ∂Φ(x).

Remark 2.4. R.T. Rockafellar defined originally in [29] the second-order difference quotient func-

tions with a factor 1
2 in the denominator. The main reason to include this factor is getting the

second-order epi-derivatives agree with classical second-order derivatives in the case where both

exist. Since there is no confusion in the present work, and for simplicity, we omit the factor 1
2 in

our definition.

Definition 2.5 (Twice epi-differentiability). Let Φ ∈ Γ0(H). We say that Φ is twice epi-differentiable

at x ∈ dom(Φ) for y ∈ ∂Φ(x) if (∆2
τΦ(x|y))τ>0 Mosco epi-converges. In that case we denote by

d2eΦ(x|y) := ME-lim∆2
τΦ(x|y),

which is called the second-order epi-derivative of Φ at x for y.

Example 2.6. Let |·| : R → R stand for the standard absolute value map. It is clear that

|·| ∈ Γ0(R) with

∂ |·| (x) =


{−1} if x < 0,

[− 1, 1] if x = 0,

{1} if x > 0,

for all x ∈ R. One can easily see that |·| is twice epi-differentiable at any x ∈ R for all y ∈ ∂ |·| (x)
with d2e |·| (x|y) = IKx,y where

Kx,y :=


R if x ̸= 0,

R− if x = 0 and y = −1,

{0} if x = 0 and y ∈ (−1, 1),

R+ if x = 0 and y = 1,

is a nonempty closed convex subset of R. In particular we have d2e |·| (x|y) ∈ Γ0(R) with

proxd2
e|·|(x|y) = projKx,y

,

for all x ∈ R and y ∈ ∂ |·| (x).
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We conclude this section by recalling two propositions (see, e.g., [29, 30] for the finite-dimensional

case and [1, 9] for the infinite-dimensional one). We bring to the attention of the reader that For-

mula (1) given in Proposition 2.8 is the key point in order to derive our main result (Theorem 3.16)

in the next section.

Proposition 2.7. Let Φ ∈ Γ0(H). If Φ is twice epi-differentiable at x ∈ dom(Φ) for y ∈ ∂Φ(x),

then d2eΦ(x|y) ∈ Γ0(H).

Proposition 2.8. Let Φ ∈ Γ0(H) and F : R+ → H be a given function. We consider the func-

tion u : R+ → H defined by u(t) := proxΦ(F (t)) for all t ≥ 0. If the conditions

(i) F is differentiable at t = 0;

(ii) Φ is twice epi-differentiable at u(0) for F (0)− u(0);

are both satisfied, then u is differentiable at t = 0 with

u′(0) = proxd2
eΦ(u(0)|F (0)−u(0))(F

′(0)). (1)

3 Main result

This section is dedicated to the main result (Theorem 3.16) of the present paper. As a first step

we provide in Section 3.1 the functional settings and recall some basic results. A general scalar

Signorini-type problem is presented and investigated in Section 3.2. A general scalar Tresca-type

problem is introduced and studied in Section 3.3. On this occasion the subdifferential of the

corresponding Tresca-type functional is characterized. Finally, in Section 3.4, we establish our

main result (Theorem 3.16) which claims, roughly speaking, that the derivative of a parameterized

Tresca-type problem satisfies Signorini’s conditions.

3.1 Functional setting and basic results

In the whole section we fix d ∈ N∗ being a positive integer. Let Ω ⊂ Rd be a nonempty bounded

connected open subset of Rd with a Lipschitz continuous boundary Γ := ∂Ω. In what follows C∞
c (Ω)

stands for the standard space of infinitely differentiable real functions defined and compactly sup-

ported on Ω, and D′(Ω) stands for the corresponding classical distributions space. Then we de-

note by L2(Ω), L2(Γ), L1(Γ), H1(Ω), H1/2(Γ), H−1/2(Γ), etc., the usual Lebesgue and Sobolev

spaces endowed with their standard norms. We recall that the continuous and dense embed-

dings H1(Ω) ↪→ L2(Ω), H1(Ω) ↪→ H1/2(Γ) ↪→ L2(Γ) ↪→ H−1/2(Γ) and L2(Γ) ↪→ L1(Γ) hold. We

also recall that the continuous and dense embedding H1(Ω) ↪→ L2(Γ) is compact. We refer for

instance to the standard books [7, 11]. Finally we denote by BΓ(s, ε) ⊂ Γ the usual open ball of Γ

centered at some s ∈ Γ with some radius ε > 0.

Proposition 3.1 (Green formula). Let w ∈ H1(Ω). If ∆w ∈ L2(Ω), then ∇w admits a normal

trace ∂nw ∈ H−1/2(Γ) on Γ, and the Green formula∫
Ω

∆w φ+

∫
Ω

∇w · ∇φ = ⟨∂nw,φ⟩H−1/2(Γ)×H1/2(Γ) ,
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holds true for all φ ∈ H1(Ω). Moreover ∂nw can be identified to an element of L2(Γ) with

⟨∂nw,φ⟩H−1/2(Γ)×H1/2(Γ) =

∫
Γ

∂nw φ,

for all φ ∈ H1/2(Γ), if and only if there exists c ≥ 0 such that∣∣∣⟨∂nw,φ⟩H−1/2(Γ)×H1/2(Γ)

∣∣∣ ≤ c∥φ∥L2(Γ),

for all φ ∈ H1/2(Γ).

Proof. We refer to [13, Corollary 2.6 p.28] for the first part of Proposition 3.1. The second part

directly follows from Proposition A.1 in Appendix A.

Let us fix some function f ∈ L2(Ω). In what follows we will consider the classical Neumann

problem given by {
−∆F + F = f in Ω,

∂nF = 0 on Γ.
(NP)

A solution to Problem (NP) is a function F ∈ H1(Ω) which satisfies −∆F + F = f in D′(Ω) and
such that ∂nF ∈ L2(Γ) with ∂nF (s) = 0 for almost every s ∈ Γ. Let us recall the very classical

variational formulation and the well-posedness of Problem (NP) in the next propositions. We refer,

among others, to the standard books [7, 11].

Proposition 3.2. A function F ∈ H1(Ω) is a solution to Problem (NP) if and only if it satisfies

the variational equality given by ∫
Ω

∇F · ∇φ+

∫
Ω

Fφ =

∫
Ω

fφ,

for all φ ∈ H1(Ω).

Proposition 3.3. Problem (NP) admits a unique solution F ∈ H1(Ω). Moreover it holds that

∥F∥H1(Ω) ≤ ∥f∥L2(Ω).

3.2 A general scalar Signorini-type problem

In the whole section we consider four (possibly empty) measurable pairwise disjoint subsets ΓN,

ΓD, ΓS−, ΓS+ of Γ such that the decomposition

Γ = ΓN ∪ ΓD ∪ ΓS− ∪ ΓS+,

holds true. The general scalar Signorini-type problem considered in this paper has the following

form 

−∆u+ u = f in Ω,

∂nu = 0 on ΓN,

u = 0 on ΓD,

u ≤ 0, ∂nu ≤ 0 and u∂nu = 0 on ΓS−,
u ≥ 0, ∂nu ≥ 0 and u∂nu = 0 on ΓS+.

(SP)

Note that similar scalar versions of the usual (vectorial) Signorini problem can be found in the

literature (see, e.g., [22, Section 1]).
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Definition 3.4. Let u ∈ H1(Ω).

(i) The function u is said to be a (strong) solution to Problem (SP) if it satisfies −∆u+ u = f

in D′(Ω) and ∂nu ∈ L2(Γ) with the four boundary conditions being satisfied almost every-

where on Γ.

(ii) The function u is said to be a weak solution to Problem (SP) if u ∈ K1 and u satisfies the

variational inequality given by∫
Ω

∇u · ∇(φ− u) +

∫
Ω

u(φ− u) ≥
∫
Ω

f(φ− u),

for all φ ∈ K1, where K1 is the nonempty closed convex subset of H1(Ω) given by

K1 := {φ ∈ H1(Ω) | φ ≤ 0 on ΓS−, φ = 0 on ΓD and φ ≥ 0 on ΓS+}.

Remark 3.5. We introduce in Definition 3.4 two different concepts of solutions to Problem (SP).

In fact, without additional assumptions, we are only able to prove the existence and uniqueness of

a weak solution (see Proposition 3.6 below). Nevertheless we provide in Proposition 3.8 a sufficient

condition which ensures that a weak solution to Problem (SP) is a solution in the strong sense.

Proposition 3.6. Problem (SP) admits a unique weak solution given by

u = projK1(F ),

where F ∈ H1(Ω) is the unique solution to Problem (NP).

Proof. Let u ∈ H1(Ω). From Definition 3.4 and Proposition 3.2 we know that u is a weak solution

to Problem (SP) if and only if u ∈ K1 and ⟨F − u, φ− u⟩H1(Ω) ≤ 0 for all φ ∈ K1, that is exactly,

if and only if u = projK1(F ).

Definition 3.7. The decomposition Γ = ΓN ∪ ΓD ∪ ΓS− ∪ ΓS+ is said to be consistent if the

following conditions are both fulfilled:

(i) Almost every point of Γ is an interior point of one of the subsets ΓN, ΓD, ΓS− and ΓS+;

(ii) The nonempty closed convex subset K1/2 of H1/2(Γ) defined by

K1/2 := {φ ∈ H1/2(Γ) | φ ≤ 0 on ΓS−, φ = 0 on ΓD and φ ≥ 0 on ΓS+},

is dense in the nonempty closed convex subset K0 of L2(Γ) defined by

K0 := {φ ∈ L2(Γ) | φ ≤ 0 on ΓS−, φ = 0 on ΓD and φ ≥ 0 on ΓS+}.

Proposition 3.8. Let u ∈ H1(Ω). Then:

(i) If u is a (strong) solution to Problem (SP), then u is a weak solution to Problem (SP).

(ii) If u is a weak solution to Problem (SP) with ∂nu ∈ L2(Γ) and the decomposition Γ =

ΓN ∪ ΓD ∪ ΓS− ∪ ΓS+ is consistent, then u is a (strong) solution to Problem (SP).
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Proof. (i) Assume that u is a (strong) solution to Problem (SP). From the boundary conditions,

note that u ∈ K1. Moreover it holds that ∆u = u − f ∈ L2(Ω). Since moreover ∂nu ∈ L2(Γ), the

Green formula leads to∫
Ω

∇u · ∇(φ− u) +

∫
Ω

u(φ− u) =

∫
Ω

f(φ− u) +

∫
Γ

∂nu(φ− u) ≥
∫
Ω

f(φ− u),

for all φ ∈ K1 (the last inequality coming from the boundary conditions of u and φ). This concludes

the proof of the first item. (ii) Assume that u is a weak solution to Problem (SP) with ∂nu ∈ L2(Γ)

and that the decomposition Γ = ΓN ∪ ΓD ∪ ΓS− ∪ ΓS+ is consistent. In particular we have u ∈ K1.

Considering the test functions φ = u±ψ ∈ K1 with ψ ∈ C∞
c (Ω), we get that −∆u+u = f in D′(Ω)

and thus ∆u = u− f ∈ L2(Ω). Since ∂nu ∈ L2(Γ), the Green formula leads to∫
Γ

∂nu(φ− u) ≥ 0,

for all φ ∈ K1, and thus for all φ ∈ K1/2. From density of K1/2 in K0, the above inequality

is satisfied for all φ ∈ K0. Let s ∈ Γ be a Lebesgue point of ∂nu ∈ L2(Γ) which is moreover

in the interior of one of the subsets ΓN, ΓD, ΓS− and ΓS+. If s ∈ ΓN, we consider the test

functions φ = u± ψ ∈ K0 where

ψ :=

{
1 on BΓ(s, ε),

0 on Γ\BΓ(s, ε),

for small enough ε > 0 satisfying BΓ(s, ε) ⊂ ΓN. We get that

±1

|BΓ(s, ε)|

∫
BΓ(s,ε)

∂nu ≥ 0.

Taking the limit ε → 0+, we obtain that ∂nu(s) = 0. Adapting appropriately the above strategy

to the case s ∈ ΓS− with the test function φ = u − ψ ∈ K0 (resp. s ∈ ΓS+ with the test

function φ = u+ ψ ∈ K0), we get that ∂nu(s) ≤ 0 (resp. ∂nu(s) ≥ 0). Finally considering the test

functions φ = 0 ∈ K0 and φ = 2u ∈ K0, we get that∫
Γ

u∂nu = 0,

while the integrand is nonnegative almost everywhere on Γ from the previous assertions. We

conclude that u(s)∂nu(s) = 0 for almost every s ∈ ΓS− and almost every s ∈ ΓS+. The proof of (ii)

is thereby completed.

Remark 3.9. The notion of consistent decomposition introduced in Definition 3.7 does not play

any crucial role in our study. Indeed our aim is not to establish a minimal sufficient condition

which guarantees the equivalence of the two notions of strong and weak solutions to Problem (SP).

Nevertheless one can easily note that the notion of consistent decomposition is quite unrestrictive.

3.3 A general scalar Tresca-type problem and the corresponding Tresca-

type functional

The general scalar Tresca-type problem considered in this paper has the form{
−∆u+ u = f in Ω,

|∂nu| ≤ 1 and u∂nu = − |u| on Γ.
(TP)
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A solution to Problem (TP) is a function u ∈ H1(Ω) which satisfies −∆u + u = f in D′(Ω) and

such that ∂nu ∈ L2(Γ) with |∂nu(s)| ≤ 1 and u(s)∂nu(s) = − |u(s)| for almost every s ∈ Γ.

Remark 3.10. If u ∈ H1(Ω) is a solution to Problem (TP), note that the boundary conditions

impose some restrictions on the boundary values of u and ∂nu. Firstly, if u(s) ̸= 0 for some s ∈ Γ,

then ∂nu(s) = −sign(u(s)). Secondly, if ∂nu(s) ∈ (−1, 1) for some s ∈ Γ, then u(s) = 0. Finally,

if ∂nu(s) = −1 (resp. ∂nu(s) = 1) for some s ∈ Γ, then u(s) ≥ 0 (resp. u(s) ≤ 0).

Proposition 3.11. A function u ∈ H1(Ω) is a solution to Problem (TP) if and only if it satisfies

the variational inequality given by∫
Ω

∇u · ∇(φ− u) +

∫
Ω

u(φ− u) +

∫
Γ

|φ| −
∫
Γ

|u| ≥
∫
Ω

f(φ− u),

for all φ ∈ H1(Ω).

Proof. Firstly let u ∈ H1(Ω) be a solution to Problem (TP). It holds that ∆u = u − f ∈ L2(Ω).

Since moreover ∂nu ∈ L2(Γ), the Green formula leads to∫
Ω

∇u · ∇(φ− u) +

∫
Ω

u(φ− u)−
∫
Γ

∂nu(φ− u) =

∫
Ω

f(φ− u),

for all φ ∈ H1(Ω). Separating the three cases u(s) = 0, u(s) > 0 (with ∂nu(s) = −1) and u(s) < 0

(with ∂nu(s) = 1), one can easily prove that −∂nu(s)(φ(s) − u(s)) ≤ |φ(s)| − |u(s)| for almost

every s ∈ Γ and all φ ∈ H1(Ω). This concludes the first part of the proof. Conversely let

u ∈ H1(Ω) satisfying the variational inequality. Considering the test functions φ = u± ψ ∈ H1(Ω)

with ψ ∈ C∞
c (Ω), we get that −∆u + u = f in D′(Ω) and thus we obtain ∆u = u − f ∈ L2(Ω).

The Green formula leads to

−⟨∂nu, φ− u⟩H−1/2(Γ)×H1/2(Γ) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

for all φ ∈ H1(Ω). Considering the test functions φ = u ± ψ ∈ H1(Ω) with ψ ∈ H1(Ω) and using

the continuous embedding L2(Γ) ↪→ L1(Γ), there exists c ≥ 0 such that

|⟨∂nu, ψ⟩H−1/2(Γ)×H1/2(Γ)| ≤ c∥ψ∥L2(Γ),

for all ψ ∈ H1/2(Γ). We deduce from Proposition 3.1 that ∂nu ∈ L2(Γ) and that

−
∫
Γ

∂nu(φ− u) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

for all φ ∈ H1(Ω), and thus for all φ ∈ L2(Γ) from the density of H1/2(Γ) in L2(Γ) and the

continuous embedding L2(Γ) ↪→ L1(Γ). Let s ∈ Γ be a Lebesgue point of ∂nu ∈ L2(Γ) and let us

consider the test functions φ = u± ψ ∈ L2(Γ) where ψ ∈ L2(Γ) is defined by

ψ :=

{
1 on BΓ(s, ε),

0 on Γ\BΓ(s, ε),

with ε > 0. We deduce that
±1

|BΓ(s, ε)|

∫
BΓ(s,ε)

∂nu ≤ 1.
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Taking the limit ε→ 0+, we obtain that |∂nu(s)| ≤ 1, and thus u(s)∂nu(s)+ |u(s)| ≥ 0. Moreover,

by considering the test function φ = 0 ∈ L2(Γ), we get that∫
Γ

u∂nu+ |u| ≤ 0,

while the integrand is nonnegative almost everywhere on Γ from the previous assertions. The proof

is complete.

Proposition 3.12. Problem (TP) admits a unique solution given by

u = proxΦ(F ),

where F ∈ H1(Ω) is the unique solution to Problem (NP) and Φ ∈ Γ0(H
1(Ω)) is the Tresca-type

functional defined by

Φ : H1(Ω) −→ R

w 7−→ Φ(w) :=

∫
Γ

|w| .

Proof. Firstly note that the Tresca-type functional Φ belongs to Γ0(H
1(Ω)), in particular thanks to

the continuous embedding H1(Ω) ↪→ L2(Γ). Now let u ∈ H1(Ω). From Propositions 3.2 and 3.11,

we know that u is a solution to Problem (TP) if and only if ⟨F − u, φ− u⟩H1(Ω) ≤ Φ(φ)−Φ(u) for

all φ ∈ H1(Ω), that is exactly, if and only if F − u ∈ ∂Φ(u), that is, if and only if u = proxΦ(F ).

The proof is complete.

For the needs of our main result, we state some preliminary results on the Tresca-type functional.

To this aim we introduce the Auxiliary Problem{
−∆v + v = 0 in Ω,

∂nv(s) ∈ ∂ |·| (u(s)) on Γ,
(APu)

for all u ∈ H1(Ω). A solution to Problem (APu) for some u ∈ H1(Ω) is a function v ∈ H1(Ω) which

satisfies −∆v + v = 0 in D′(Ω) and such that ∂nv ∈ L2(Γ) with ∂nv(s) ∈ ∂ |·| (u(s)) for almost

every s ∈ Γ.

Lemma 3.13. It holds that

∂Φ(u) = the set of solutions to Problem (APu),

for all u ∈ H1(Ω).

Proof. Let u ∈ H1(Ω) and let us prove the two inclusions separately. Firstly let v ∈ H1(Ω) be

a solution to Problem (APu) and let us prove that v ∈ ∂Φ(u). Since ∂nv(s) ∈ ∂ |·| (u(s)), we
get that ∂nv(s)(φ(s) − u(s)) ≤ |φ(s)| − |u(s)| for almost every s ∈ Γ and for all φ ∈ H1(Ω).

Since ∂nv ∈ L2(Γ), we get that ∫
Γ

∂nv(φ− u) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

for all φ ∈ H1(Ω). Since −∆v+ v = 0 in D′(Ω) and thus ∆v = v ∈ L2(Ω), the Green formula leads

to

⟨v, φ− u⟩H1(Ω) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

13



for all φ ∈ H1(Ω), which means that v ∈ ∂Φ(u). The proof of the first inclusion is complete.

Conversely let v ∈ ∂Φ(u) and let us prove that v is a solution to Problem (APu). Since v ∈ ∂Φ(u)

it holds that ∫
Ω

∇v · ∇(φ− u) +

∫
Ω

v(φ− u) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

for all φ ∈ H1(Ω). Considering the test functions φ = u ± ψ ∈ H1(Ω) with ψ ∈ C∞
c (Ω), we get

that −∆v + v = 0 in D′(Ω) and thus ∆v = v ∈ L2(Ω). The Green formula leads to

⟨∂nv, φ− u⟩H−1/2(Γ)×H1/2(Γ) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

for all φ ∈ H1(Ω). Using the test functions φ = u±ψ ∈ H1(Ω) with ψ ∈ H1(Ω) and the continuous

embedding L2(Γ) ↪→ L1(Γ), we deduce that there exists a constant c ≥ 0 such that

|⟨∂nv, ψ⟩H−1/2(Γ)×H1/2(Γ)| ≤ c ∥ψ∥L2(Γ) ,

for all ψ ∈ H1/2(Γ). From Proposition 3.1, we deduce that ∂nv ∈ L2(Γ) and, from density of H1/2(Γ)

in L2(Γ), that ∫
Γ

∂nv(φ− u) ≤
∫
Γ

|φ| −
∫
Γ

|u| ,

for all φ ∈ L2(Γ). Let s ∈ Γ be a Lebesgue point of ∂nv ∈ L2(Γ), of the product u∂nv ∈ L1(Γ) and

of |u| ∈ L2(Γ). Using the test function φ ∈ L2(Γ) given by

φ :=

{
ξ on BΓ(s, ε),

u on Γ\BΓ(s, ε),

where ε > 0 and ξ ∈ R, we obtain that

1

|BΓ(s, ε)|

∫
BΓ(s,ε)

∂nv(ξ − u) ≤ 1

|BΓ(s, ε)|

∫
BΓ(s,ε)

|ξ| − 1

|BΓ(s, ε)|

∫
BΓ(s,ε)

|u| .

Taking the limit ε → 0+, we obtain that ∂nv(s)(ξ − u(s)) ≤ |ξ| − |u(s)|. Since this inequality is

satisfied for all ξ ∈ R, we deduce that ∂nv(s) ∈ ∂ |·| (u(s)). The proof of the second inclusion is

now complete.

Proposition 3.14. The second-order difference quotient functions associated to the Tresca-type

functional Φ satisfy

∆2
τΦ(u|v)(w) =

∫
Γ

∆2
τ |·| (u(s)|∂nv(s))(w(s)) ds,

for all τ > 0, u ∈ H1(Ω), v ∈ ∂Φ(u) and w ∈ H1(Ω).

Proof. Let τ > 0, u ∈ H1(Ω), v ∈ ∂Φ(u) and w ∈ H1(Ω). Since v ∈ ∂Φ(u), we know from

Lemma 3.13 and the Green formula that

⟨v, w⟩H1(Ω) =

∫
Γ

∂nv w.

Thus it holds that

∆2
τΦ(u|v)(w) =

Φ(u+ τw)− Φ(u)− τ⟨v, w⟩H1(Ω)

τ2

=

∫
Γ

|u(s) + τw(s)| − |u(s)| − τ∂nv(s)w(s)

τ2
ds.

Since ∂nv(s) ∈ ∂ |·| (u(s)) for almost every s ∈ Γ, we exactly get the expected formula.
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Remark 3.15. If Φ is twice epi-differentiable at u ∈ H1(Ω) for some v ∈ ∂Φ(u), one can naturally

expect from Proposition 3.14 that its second-order epi-derivative satisfies

d2eΦ(u|v)(w) =
∫
Γ

d2e |·| (u(s)|∂nv(s))(w(s)) ds,

for all w ∈ H1(Ω). The above formula, which corresponds from Proposition 3.14 to the inversion of

the ME-lim symbol and the
∫
Γ
symbol, remains an open and challenging question that we postpone

to a future research project. We refer to Remark 3.18 and Appendix B for the proof of the above

formula in some particular cases in which u is a solution to the Tresca-type problem and v ∈ ∂Φ(u)

is equal to the difference between a solution to a Neumann problem and u. Along the same lines

let us mention the work [26] in which the author studied the inversion of the ME-lim symbol and

the
∫
Ω

symbol over the L2(Ω)-space. Nevertheless this previous work cannot be applied to our

context since we consider here the H1(Ω)-space and the
∫
Γ
symbol over the boundary Γ (instead

of the
∫
Ω
symbol over the set Ω in [26]).

3.4 The derivative of a parameterized Tresca-type problem

The parameterized Tresca-type problem considered in this paper is given by{
−∆ut + ut = ft in Ω,

|∂nut| ≤ 1 and ut∂nut = − |ut| on Γ,
(TPt)

where ft ∈ L2(Ω) for all t ≥ 0. From Proposition 3.12, Problem (TPt) has a unique solution

ut ∈ H1(Ω) given by

ut = proxΦ(Ft),

for all t ≥ 0, where Ft ∈ H1(Ω) is the unique solution to the parameterized Neumann problem{
−∆Ft + Ft = ft in Ω,

∂nFt = 0 on Γ.
(NPt)

In particular note that F0 − u0 ∈ ∂Φ(u0).

Theorem 3.16. Let us consider that the following assumptions are both satisfied:

(A1) the map t ≥ 0 7→ ft ∈ L2(Ω) is differentiable at t = 0, with derivative denoted by f ′0 ∈ L2(Ω);

(A2) Φ is twice epi-differentiable at u0 for F0 − u0 with

d2eΦ(u0|F0 − u0)(w) =

∫
Γ

d2e |·| (u0(s)|∂n(F0 − u0)(s))(w(s)) ds,

for all w ∈ H1(Ω).

Then the map t ≥ 0 7−→ ut ∈ H1(Ω) is differentiable at t = 0 and its derivative denoted by

u′0 ∈ H1(Ω) is the unique weak solution to the Signorini-type problem given by

−∆u′0 + u′0 = f ′0 in Ω,

∂nu
′
0 = 0 on Γu0

N ,

u′0 = 0 on Γu0

D ,

u′0 ≤ 0, ∂nu
′
0 ≤ 0 and u′0∂nu

′
0 = 0 on Γu0

S−,
u′0 ≥ 0, ∂nu

′
0 ≥ 0 and u′0∂nu

′
0 = 0 on Γu0

S+,

(SP′
0)
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where

Γu0

N := {s ∈ Γ | u0(s) ̸= 0}, Γu0

D := {s ∈ Γ | u0(s) = 0 and ∂nu0(s) ∈ (−1, 1)},

Γu0

S− := {s ∈ Γ | u0(s) = 0 and ∂nu0(s) = 1}, Γu0

S+ := {s ∈ Γ | u0(s) = 0 and ∂nu0(s) = −1}.

If moreover ∂nu
′
0 ∈ L2(Γ) and the decomposition Γ = Γu0

N ∪ Γu0

D ∪ Γu0

S− ∪ Γu0

S+ is consistent, then u′0
is a (strong) solution to Problem (SP′

0).

Proof. From the linearity of Problem (NPt) and from the inequality ∥Ft∥H1(Ω) ≤ ∥ft∥L2(Ω) for

all t ≥ 0, one can easily prove that the map t ≥ 0 7−→ Ft ∈ H1(Ω) is differentiable at t = 0 and

the derivative denoted by F ′
0 ∈ H1(Ω) is the unique solution to the Neumann problem{

−∆F ′
0 + F ′

0 = f ′0 in Ω,

∂nF
′
0 = 0 on Γ.

(NP′
0)

On the other hand it follows from the second hypothesis that

d2eΦ(u0|F0 − u0)(w) =

∫
Γ

IKu0(s),∂n(F0−u0)(s)
(w(s)) ds,

for all w ∈ H1(Ω), where the notation Ku0(s),∂n(F0−u0)(s) has been introduced in Example 2.6. We

deduce that

d2eΦ(u0|F0 − u0)(w) = IKu0,∂n(F0−u0)
(w),

for all w ∈ H1(Ω), where

Ku0,∂n(F0−u0) := {φ ∈ H1(Ω) | φ(s) ∈ Ku0(s),∂n(F0−u0)(s) for almost every s ∈ Γ},

is a nonempty closed convex subset of H1(Ω). Since ∂nF0 = 0 on Γ, note that

Ku0,∂n(F0−u0) = {φ ∈ H1(Ω) | φ ≤ 0 on Γu0

S−, φ = 0 on Γu0

D and φ ≥ 0 on Γu0

S+}.

Finally, from Proposition 2.8, we get that the map t ≥ 0 7−→ ut ∈ H1(Ω) is differentiable at t = 0

and the derivative denoted by u′0 ∈ H1(Ω) is given by

u′0 = proxd2
eΦ(u0|F0−u0)(F

′
0) = projKu0,∂n(F0−u0)

(F ′
0).

The proof is concluded by Proposition 3.6. The last part of Theorem 3.16 is due to (ii) of Propo-

sition 3.8.

Remark 3.17. Let us discuss some applications of our main result (Theorem 3.16). The first one

is the natural approximation of the solution ut to the perturbed Tresca-type problem (TPt) using

the solution u0 and its derivative u′0, that is, ut ≈ u0 + tu′0 for small t > 0. This is the topic

of the numerical simulations exposed in Section 4 below. On the other hand, Theorem 3.16 is

applicable in shape optimization theory in the context of contact mechanics. Indeed the sensitivity

analysis with respect to the shape of a cost functional requires to compute and characterize the

shape derivative of the state. Hence, in view of shape optimization problems involving Tresca-type

problems, our main result would allow to characterize the shape derivative of the state and thus

to obtain a useful expression of the shape gradient of the cost functional in view of numerical

approximations. This nontrivial application to shape optimization problems has been our primary

motivation and will be the subject of a forthcoming work by the authors.
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Remark 3.18. This remark is dedicated to Assumption (A2) which is not trivial as evoked in

Remark 3.15. In this discussion we will consider the notation Ku0,∂n(F0−u0) introduced in the proof

of Theorem 3.16. From Proposition 2.3, Assumption (A2) requires that

(i) for all w ∈ H1(Ω) and all (wτ )τ>0 ⊂ H1(Ω) such that (wτ )τ>0 ⇀ w in H1(Ω), it holds that

lim inf ∆2
τΦ(u0|F0 − u0)(wτ ) ≥ IKu0,∂n(F0−u0)

(w),

which can be rewritten as

lim inf

∫
Γ

∆2
τ |·| (u0(s)|∂n(F0 − u0)(s))(wτ (s)) ds

≥
∫
Γ

d2e |·| (u0(s)|∂n(F0 − u0)(s))(w(s)) ds,

from Proposition 3.14;

(ii) and for all w ∈ H1(Ω), there exists (wτ )τ>0 ⊂ H1(Ω) such that (wτ )τ>0 → w in H1(Ω) and

lim sup∆2
τΦ(u0|F0 − u0)(wτ ) ≤ IKu0,∂n(F0−u0)

(w).

From the continuous compact embedding H1(Ω) ↪→ L2(Γ), the classical Fatou lemma (see, e.g., [7,

Lemma 4.1 p.90]) and the twice epi-differentiability of the absolute value map | · | (see Ex-

ample 2.6), the point (i) is obviously satisfied. The point (ii) is trivial for w ∈ H1(Ω) such

that w /∈ Ku0,∂n(F0−u0). Finally, in order to check the validity of Assumption (A2), one has (only)

to prove that

(ii’) for all w ∈ Ku0,∂n(F0−u0), there exists (wτ )τ>0 ⊂ H1(Ω) such that (wτ )τ>0 → w in H1(Ω)

and

lim sup∆2
τΦ(u0|F0 − u0)(wτ ) ≤ 0.

In the case where Γu0

N has a null measure, the point (ii’) can be easily derived by taking the

constant sequence wτ := w for all τ > 0, and thus Assumption (A2) is satisfied. However we are

not able to write a general proof of the point (ii’) in the case where Γu0

N has a positive measure.

Nevertheless, in Appendix B, we provide some examples of sufficient conditions on u0 and Γ in

order to guarantee that the point (ii’) is satisfied, even if Γu0

N has a positive measure.

4 Illustration with some numerical simulations

In what follows we preserve the notations introduced in Section 3. Our aim in this section is to

illustrate our main result (Theorem 3.16) with some numerical simulations. Let us mention that

the numerical simulations are performed using Freefem++ software (see [18]) and that the iterative

switching algorithms are presented in Appendix C. In full agreement with the main result of the

present work, these simulations underline that, for a given small t > 0, the unique solution ut to

the parameterized Tresca-type problem (TPt) can be approximated by u0 + tu′0, where u
′
0 is the

unique weak solution to the Signorini-type problem (SP′
0).
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Two-dimensional simulations. Let d = 2 and Ω be the unit open disk of R2. Then, for

all t ≥ 0, we consider the function ft ∈ L2(Ω) defined by ft(x, y) := etf(x, y) where

f(x, y) :=
1

2
(x2 + y2 − 5)h(x)− 2xh′(x)− 1

2
(x2 + y2 − 1)h′′(x),

for almost all (x, y) ∈ Ω, where

h(x) :=


−1 if −1 < x ≤ − 1

2 ,

sin (πx) if − 1
2 ≤ x ≤ 1

2 ,

1 if 1
2 ≤ x < 1,

for all x ∈ (−1, 1). Our choice of such a function f = f0 is justified by the fact that we are able,

in this case, to express analytically the exact solution u0 to Problem (TP0), which is given by

u0(x, y) :=
1

2
(x2 + y2 − 1)h(x),

for all (x, y) ∈ Ω. On the other hand the choice of the expression of the function h is justified by

the fact that it provides an example in which the decomposition

Γ = Γu0

N ∪ Γu0

D ∪ Γu0

S− ∪ Γu0

S+,

is nontrivial in the sense that Γu0

S−∪Γu0

S+ has a positive measure, which guarantees in the Signorini-

type problem (SP′
0) the presence of parts of the boundary with Signorini’s conditions. Indeed, one

can easily deduce from the expression of u0 that

Γu0

S+ =

{
(x, y) ∈ Γ | x ≤ −1

2

}
, Γu0

D =

{
(x, y) ∈ Γ | −1

2
< x <

1

2

}
,

and Γu0

S− =

{
(x, y) ∈ Γ | x ≥ 1

2

}
.

We refer to Figure 1. In order to illustrate Theorem 3.16, we first compute numerically the

solutions u0 and u′0. Then, for several small values t > 0, we compute numerically the solution ut
and compare it with u0 + tu′0 (using the H1-norm). We concatenate our results in Table 1, and

Figure 2 gives the representation of the H1-comparison with respect to t in logarithmic scale.

Figure 3 concludes this paragraph with the illustration of the case t = 0.01.

t 0.40 0.20 0.15 0.1 0.075 0.05 0.025 0.01 0.0075 0.005 0.0025

∥ut−u0−tu′
0∥H1(Ω) 0.6528 0.2360 0.1580 0.0909 0.0616 0.0360 0.0138 0.0040 0.0029 0.0021 0.0016

Table 1: H1-norm of the difference between ut and its first-order approximation u0 + tu′0.

Three-dimensional simulations. Let d = 3 and Ω be the cube (0, 1)3. We use here the

parameterized function ft ∈ L2(Ω) (chosen haphazardly) defined by

ft(x, y, z) := sin(t)xeye2z +
√
x cos(xy2)ez + 25(z − 1),

for all (x, y, z) ∈ Ω and all t ≥ 0. Figure 4 illustrates the solution ut for t = 0.1 and its first-order

approximation u0 + tu′0. Here we obtain ∥ut − u0 − tu′0∥H1(Ω) = 0.000575736.
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Γu0

S−Γu0

S+

Γu0

D

Γu0

D

Figure 1: Boundary decomposition for the two-dimensional example of Section 4.

5 Concluding remarks

In this paper we investigated the sensitivity analysis of a scalar Tresca-type problem. The sen-

sitivity analysis in our context has to be understood in the sense of the differentiable property

of the solution with respect to right-hand source term perturbations. Using second-order varia-

tional analysis tools, and particularly the sophisticated concept of twice epi-differentiability of a

proper closed convex function, we show that the derivative of the solution to the parameterized

Tresca problem satisfies Signorini’s conditions. At first glance, the Tresca-type problem and the

Signorini-type problem seem to have no connection between them. Thanks to Theorem 3.16, we

can roughly say, in our context, that Signorini’s solutions can be considered as first-order ap-

proximations of Tresca’s solutions in a certain sense. This fact was highlighted by the numerical

simulations in Section 4. The combination of tools from both functional and convex analyses was

fruitful in the context of this paper and permit us to obtain original results. In fact, the concept

of twice epi-differentiability is usually used in the optimization community in finite-dimensional

spaces. Applying it for other problems (in particular in infinite-dimensional settings) opens the

way to disseminate this concept to other communities. Many questions need further investigations

such as the case where all the data are perturbed (including the friction threshold for instance), or

giving sufficient conditions for the twice epi-differentiability of the Tresca-type functional Φ (see

Remark 3.18 and Appendix B). It is worth noticing that we focused here on the scalar case but we

are confident that our methodology can be extended in the same manner to the linear elasticity

case. Also it is well-known that the Tresca friction law is an approximation of the more realistic

Coulomb one. This may open possibilities for further extensions to quasi-variational inequalities

and to time-dependent processes in contact mechanics. This is out of the scope of the current

paper and will be the subject of forthcoming research projects.
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Figure 2: The H1-comparison ∥ut − u0 − tu′0∥H1(Ω) with respect to t in logarithmic scale.

A A result on the extension of a linear operator

Let V (resp. H) be a real Hilbert space. We denote by ⟨·, ·⟩V (resp. ⟨·, ·⟩H) the corresponding

scalar product and by ∥ · ∥V (resp. ∥ · ∥H) the associated norm. We assume that the continuous

and dense embedding V ↪→ H holds. We introduce V∗ as the completion of H for the norm ∥·∥∗
defined on H by

∥h∥∗ := sup
v∈V

∥v∥V≤1

|⟨h, v⟩H| ,

for all h ∈ H. Then we define the operator J : V∗ → V′, where V′ stands for the dual space of V,

by

∀h ∈ V∗, ∀v ∈ V, ⟨Jh, v⟩V′×V := lim
n→∞

⟨hn, v⟩H, where (hn)n ⊂ H such that hn → h in V∗.

Recall that J is an isomorphism (see, e.g., [36, Proposition 2.9.2 p.56]) and thus we can identify V∗

and V′ (without distinction between h and Jh for all h ∈ V∗). We finally have

V ↪→
dense

H ↪→
dense

V′,

and, in that context, H is usually called the pivot space.

Proposition A.1. Consider the above framework and let w ∈ V′. If

∃c ≥ 0, ∀v ∈ V, ⟨w, v⟩V′×V ≤ c ∥v∥H ,

then w can be identified to an element h ∈ H with ⟨w, v⟩V′×V = ⟨h, v⟩H for all v ∈ V.
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IsoValue
-0.449283
-0.385078
-0.342275
-0.299472
-0.256669
-0.213866
-0.171063
-0.12826
-0.0854566
-0.0426535
0.000149623
0.0429527
0.0857558
0.128559
0.171362
0.214165
0.256968
0.299771
0.342574
0.449582

The solution of the Tresca problem with f(0.01)

IsoValue
-0.449168
-0.38498
-0.342189
-0.299397
-0.256605
-0.213813
-0.171021
-0.12823
-0.0854377
-0.0426459
0.000145902
0.0429377
0.0857295
0.128521
0.171313
0.214105
0.256897
0.299689
0.34248
0.44946

Approximation of the solution of the Tresca problem with f(0.01)

Figure 3: Case t = 0.01 (d = 2): solution ut (left) and its first-order approximation u0 + tu′0
(right).

Figure 4: Case t = 0.1 (d = 3): solution ut (left) and its first-order approximation u0+tu
′
0 (right).

Proof. From the hypothesis and [7, Corollary 1.2], there exists h ∈ H such that ⟨w, v⟩V′×V = ⟨h, v⟩H
for all v ∈ V. Using the above definition of the functional J (and taking the constant sequence (hn)n
equal to h), we also have ⟨Jh, v⟩V′×V = ⟨h, v⟩H for all v ∈ V, and thus ⟨w, v⟩V′×V = ⟨Jh, v⟩V′×V

for all v ∈ V. Hence w = Jh in V′ and thus w can be identified to h with ⟨w, v⟩V′×V = ⟨h, v⟩H for

all v ∈ V.

B Some sufficient conditions for the point (ii’) of Remark 3.18

In this appendix we keep the notation introduced in Section 3 and we introduce the sets

Γu0

N− := {s ∈ Γ | u0(s) < 0} and Γu0

N+ := {s ∈ Γ | u0(s) > 0}.
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In particular it holds that Γu0

N = Γu0

N− ∪ Γu0

N+ and thus the (pairwise disjoint) decomposition

Γ = Γu0

N− ∪ Γu0

N+ ∪ Γu0

D ∪ Γu0

S− ∪ Γu0

S+,

holds true. Our aim in this section is to provide some examples of sufficient condition on u0 and Γ

which ensures that the point (ii’) of Remark 3.18 is satisfied, even if Γu0

N has a positive measure.

A first (and simple) example of sufficient condition. In this paragraph we assume that

Γ = Γu0

N+ and that u0 is continuous over the compact set Γ. In particular it holds that u0(s) ≥ c

for all s ∈ Γ for some c > 0. Let w ∈ Ku0,∂n(F0−u0) = H1(Ω) and let us prove that there

exists (wτ )τ>0 ⊂ H1(Ω) such that (wτ )τ>0 → w in H1(Ω) and

lim sup∆2
τΦ(u0|F0 − u0)(wτ ) ≤ 0.

To this aim we consider the truncature wτ ∈ H1(Ω) of w defined by

wτ (x) :=


1√
τ

if w(x) ≥ 1√
τ
,

w(x) if − 1√
τ
≤ w(x) ≤ 1√

τ
,

− 1√
τ

if w(x) ≤ − 1√
τ
,

for almost all x ∈ Ω and all τ > 0. It is clear that wτ → w in H1(Ω) when τ → 0+. Moreover,

from the inequality u0 ≥ c and the equalities ∂nu0 = −1 and ∂nF0 = 0 over Γ, we get from

Proposition 3.14 that

∆2
τΦ(u0|F0 − u0)(wτ ) =

∫
Γ

|u0(s) + τwτ (s)| − |u0(s)| − τ∂n(F0 − u0)(s)wτ (s)

τ2
ds = 0,

for all τ > 0 sufficiently small. The proof is thereby completed. Obviously this strategy can be

adapted to the case where Γ = Γu0

N− and u0 is continuous over Γ.

A second example of sufficient condition in the two-dimensional case d = 2. In this

paragraph we consider the two-dimensional case d = 2. In that context Γ is a single closed curve.

We assume that Γ is a smooth curve and we denote by γ : R → Γ an absolutely continuous T -

periodic parameterization of Γ, where T > 0 can be chosen as desired, and by γ̇ : R → R2 its

essentially bounded derivative. In particular it holds that Γ = {γ(r) | r ∈ [0, T ]}. Let us assume

that the (pairwise disjoint) decomposition Γ = Γu0

N− ∪ Γu0

N+ ∪ Γu0

D ∪ Γu0

S− ∪ Γu0

S+ satisfies

Γu0

N− :=

k1⋃
j=1

{γ(r) | rk1
j < r < rk1

j+1}, Γu0

N+ :=

k2⋃
j=1

{γ(r) | rk2
j < r < rk2

j+1},

Γu0

D :=

k3⋃
j=1

{γ(r) | rk3
j < r < rk3

j+1},

Γu0

S− :=

k4⋃
j=1

{γ(r) | rk4
j ≤ r ≤ rk4

j+1}, Γu0

S+ :=

k5⋃
j=1

{γ(r) | rk5
j ≤ r ≤ rk5

j+1},
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where ki ∈ N for all i ∈ {1, . . . , 5} (with k1 + k2 ≥ 1) and where rki
j < rki

j+1 for all j ∈ {1, . . . , ki}
and all i ∈ {1, . . . , 5}, with 3⋃

i=1

ki⋃
j=1

(rki
j , r

ki
j+1)

⋃ 5⋃
i=4

ki⋃
j=1

[rki
j , r

ki
j+1]

 = [0, T ].

Finally we also make the quite natural assumption (which is true for example when u0 and ∂nu0
are continuous over Γ) that the decomposition is such that a part of Γu0

N− is always side to side

with a part of Γu0

D or with a part of Γu0

S−, and similarly that Γu0

N+ is always side to side with a

part of Γu0

D or with a part of Γu0

S+. We refer to Figure 5 below for an illustration of an admissible

decomposition.

Ω

Γu0

D

Γu0

N+

Γu0

S+

Γu0

S−

Γu0

N−

Figure 5: Illustration on an admissible decomposition of Γ.

As in the previous paragraph we will assume that u0 is continuous over Γ. In that context we

assert that the point (ii’) of Remark 3.15 is satisfied. For the ease of presentation and notation,

we only give the proof in the case where k2 = k5 = 1 and k1 = k3 = k4 = 0 (nonetheless one can

easily understand that the proof below can be extended to the general case). We choose T = 6

and, in that context, we can write Γ = Γu0

N+ ∪ Γu0

S+ with

Γu0

S+ := {γ(r) | 0 ≤ r ≤ 3} and Γu0

N+ := {γ(r) | 3 < r < 6}. (2)

In particular, from continuity of u0 over Γ, note that u0(γ(r)) ≥ c for all r ∈ [4, 5] for some c > 0.

We refer to Figure 6 below for an illustration of the notation concerning the parameterization.

Let w ∈ Ku0,∂n(F0−u0) and let us prove that there exists (wτ )τ>0 ⊂ H1(Ω) such that (wτ )τ>0 → w

in H1(Ω) and

lim sup∆2
τΦ(u0|F0 − u0)(wτ ) ≤ 0.

To this aim we first consider the truncature yτ ∈ H1(Ω) of w defined by

yτ (x) :=


1√
τ

if w(x) ≥ 1√
τ
,

w(x) if − 1√
τ
≤ w(x) ≤ 1√

τ
,

− 1√
τ

if w(x) ≤ − 1√
τ
,
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Ω

Γu0

S+

Γu0

N+

×
0

6

×
1

7

× 2

×
3

×
5

×
4×

α(τ)

×
β(τ)

Figure 6: Illustration of the parameterization (2) of Γ.

for all τ > 0 and almost all x ∈ Ω. It is clear that yτ → w in H1(Ω) when τ → 0+. For all τ > 0

sufficiently small (such that
√
τ ≤ c), we define

α(τ) := inf{α ∈ [3, 4] | ∀r ∈ [α, 4], u0(γ(r)) ≥
√
τ},

and

β(τ) := sup{β ∈ [5, 6] | ∀r ∈ [5, β], u0(γ(r)) ≥
√
τ}.

From continuity of u0 and since u0(γ(3)) = u0(γ(6)) = 0, we deduce that α(τ) → 3 and β(τ) → 6

when τ → 0+. Then, for all τ > 0 sufficiently small, we consider the dilatation zτ ∈ H1/2(Γ) of yτ |Γ
defined by

∀r ∈ [0, 6], zτ (γ(r)) :=



yτ (γ(r)) if r ∈ [1, 2],

yτ

(
γ

(
r + 2(α(τ)− 3)

α(τ)− 2

))
if r ∈ [2, α(τ)],

yτ

(
γ

(
r + 4(3− α(τ))

4− α(τ)

))
if r ∈ [α(τ), 4],

yτ (γ(r)) if r ∈ [4, 5],

yτ

(
γ

(
r + 5(β(τ)− 6)

β(τ)− 5

))
if r ∈ [5, β(τ)],

yτ

(
γ

(
r + 7(6− β(τ))

7− β(τ)

))
if r ∈ [β(τ), 7].

Roughly speaking we have constructed zτ such that the graph of zτ ◦ γ over [2, α(τ)] corresponds

to the graph of yτ ◦ γ over [2, 3] (and similarly on the other intervals). It holds that zτ → w|Γ
in H1/2(Γ) when τ → 0+. Then, for all τ > 0 sufficiently small, we denote by wτ ∈ H1(Ω) a lift

of zτ ∈ H1/2(Γ) which satisfies wτ → w in H1(Ω) when τ → 0+. Since ∂nF0 = 0 over Γ and

denoting by

mτ (s) := ∆2
τ | · |(u0(s)|∂n(F0 − u0)(s))(wτ (s)) = ∆2

τ | · |(u0(s)|∂n(F0 − u0)(s))(zτ (s))

=
|u0(s) + τzτ (s)| − |u0(s)| − τ∂n(F0 − u0)(s)zτ (s)

τ2
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=
|u0(s) + τzτ (s)| − |u0(s)|+ τ∂nu0(s)zτ (s)

τ2
,

for all τ > 0 sufficiently small and almost all s ∈ Γ, we get from Proposition 3.14 that

∆2
τΦ(u0|F0 − u0)(wτ ) =

∫
Γ

mτ (s) ds =

∫ 2

1

∥γ̇(r)∥R2mτ (γ(r)) dr +

∫ α(τ)

2

∥γ̇(r)∥R2mτ (γ(r)) dr

+

∫ 4

α(τ)

∥γ̇(r)∥R2mτ (γ(r)) dr +

∫ 5

4

∥γ̇(r)∥R2mτ (γ(r)) dr

+

∫ β(τ)

5

∥γ̇(r)∥R2mτ (γ(r)) dr +

∫ 7

β(τ)

∥γ̇(r)∥R2mτ (γ(r)) dr.

From the definitions of α(τ), β(τ) and zτ , we get that each of the six above integrands (and thus

the integrals) are equal to zero. We deduce that ∆2
τΦ(u0|F0−u0)(wτ ) = 0 for all τ > 0 sufficiently

small, and thus lim sup∆2
τΦ(u0|F0 − u0)(wτ ) ≤ 0. The proof is complete.

Remark B.1. The above strategy provides in the two-dimensional case d = 2 a quite general

sufficient condition on u0 and Γ which guarantees that the point (ii’) of Remark 3.18 is satisfied,

even if Γu0

N has a positive measure. Although we are rather confident that this method could be

extended to the three-dimensional case d = 3, it seems clear to us that several technical difficulties

should be overcome concerning the dilatation procedure. For example one would need to assume

that each part of the (pairwise disjoint) decomposition Γ = Γu0

N− ∪ Γu0

N+ ∪ Γu0

D ∪ Γu0

S− ∪ Γu0

S+ is

star-shaped and would need to introduce a corresponding and adapted (and probably not trivial)

dilatation procedure on the two-dimensional manifold Γ.

Remark B.2. We conclude this section by emphasizing that the proof of the point (ii’) of Re-

mark 3.15 in a general setting (that is, without any assumption on u0 and Γ and in any dimen-

sion d ∈ N∗) remains an open challenge. Although we are not able to provide such a proof yet,

we conjecture that this result is true. In that case Assumption (A2) in Theorem 3.16 would be

superfluous.

C Iterative switching algorithms used in Section 4

In the literature numerous algorithms are dedicated to the numerical approximation of variational

inequalities. Among others we can mention the standard penalization techniques (see, e.g., the

book of N. Kikuchi and J.T. Oden [20]), mixed methods (see, e.g., the book of J. Haslinger et

al. [17]), the hybrid methods (see, e.g., the work of F. Ben Belgacem and Y. Renard [6]), the

stabilized Lagrange multiplier method (see, e.g., the work of P. Hild and Y. Renard [19]), or the

Nitsche method (see, e.g., the work of F. Chouly and P. Hild [8]). In order to solve Signorini-type

problems, we used in Section 4 the iterative switching algorithm introduced by J.M. Aitchison and

M.W. Poole in [2], which is recalled below for the reader’s convenience. Then, being inspired by

this procedure, we propose hereafter an adapted iterative switching algorithm in order to solve

numerically Tresca-type problems. We bring to the attention of the reader that it is not our

purpose in the present work to fully analyze this algorithm and to compare it with the previously

mentioned ones. Our aim here is (only) to provide a simple and easily implementable method

to solve Tresca-type problems. Nevertheless, the considered algorithm is experimentally validated
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by the example introduced in Section 4 for which the explicit expression of the exact solution is

known.

Iterative switching algorithm for the Signorini-type problem. We recall in this paragraph

the algorithm proposed in [2] in order to solve the Signorini-type problem (SP) given by

−∆u+ u = f in Ω,

∂nu = 0 on ΓN,

u = 0 on ΓD,

u ≤ 0, ∂nu ≤ 0 and u∂nu = 0 on ΓS−,
u ≥ 0, ∂nu ≥ 0 and u∂nu = 0 on ΓS+.

(SP)

Roughly speaking the algorithm is based on the fact that we need u = 0 or ∂nu = 0 on ΓS− ∪ΓS+.

The main idea is to impose Neumann or Dirichlet boundary conditions on ΓS− and ΓS+, and then

to check if the Signorini conditions are satisfied. If not, we change the Dirichlet boundary into a

Neumann boundary and conversely. This permits to obtain an iterative algorithm whose proof of

convergence is given in [2]. More precisely we use the following strategy:

Step 1. Solve the following well-posed problem

−∆ϕ0 + ϕ0 = f in Ω,

∂nϕ0 = 0 on ΓN,

ϕ0 = 0 on ΓD,

ϕ0 = 0 on ΓS−,
ϕ0 = 0 on ΓS+.

If ∂nϕ0 ≤ 0 on ΓS− and ∂nϕ0 ≥ 0 on ΓS+, then ϕ0 is the solution to Problem (SP).

Otherwise, go to Step 2.

Step 2. If there exists Γ1
S−,N ⊂ ΓS− such that ∂nϕ0 > 0, we define Γ1

S−,D := ΓS−\Γ1
S−,N.

Similarly, if there exists Γ1
S+,N ⊂ ΓS+ such that ∂nϕ0 < 0, we define Γ1

S+,D := ΓS+\Γ1
S+,N.

Then solve 

−∆ϕ1 + ϕ1 = f in Ω,

∂nϕ1 = 0 on ΓN,

ϕ1 = 0 on ΓD,

ϕ1 = 0 on Γ1
S−,D ⊂ ΓS−,

∂nϕ1 = 0 on Γ1
S−,N ⊂ ΓS−,

ϕ1 = 0 on Γ1
S+,D ⊂ ΓS+,

∂nϕ1 = 0 on Γ1
S+,N ⊂ ΓS+.

If ∂nϕ1 ≤ 0 on Γ1
S−,D, ϕ1 ≤ 0 on Γ1

S−,N, ∂nϕ1 ≥ 0 on Γ1
S+,D and ϕ1 ≥ 0 on Γ1

S+,N, then ϕ1
is the solution to Problem (SP). Otherwise, go to Step 3.

Step 3. If there exists Γ̃2
S−,N ⊂ Γ1

S−,D such that ∂nϕ0 > 0, we define Γ̃2
S−,D := Γ1

S−,D\Γ̃2
S−,N,

and if there exists ˜̃Γ2
S−,D ⊂ Γ1

S−,N such that ϕ0 > 0, we define ˜̃Γ2
S−,N := Γ1

S−,N\
˜̃Γ2
S−,D,

and then define Γ2
S−,D := Γ̃2

S−,D ∪ ˜̃Γ2
S−,D and Γ2

S−,N := Γ̃2
S−,N ∪ ˜̃Γ2

S−,N. Proceed in the
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same way to define Γ2
S+,D and Γ2

S+,N. Then solve

−∆ϕ2 + ϕ2 = f in Ω,

∂nϕ2 = 0 on ΓN,

ϕ2 = 0 on ΓD,

ϕ2 = 0 on Γ2
S−,D ⊂ ΓS−,

∂nϕ2 = 0 on Γ2
S−,N ⊂ ΓS−,

ϕ2 = 0 on Γ2
S+,D ⊂ ΓS+,

∂nϕ2 = 0 on Γ2
S+,N ⊂ ΓS+.

If ∂nϕ2 ≤ 0 on Γ2
S−,D, ϕ2 ≤ 0 on Γ2

S−,N, ∂nϕ2 ≥ 0 on Γ2
S+,D and ϕ2 ≥ 0 on Γ2

S+,N, then ϕ2
is the solution to Problem (SP). Otherwise repeat this step.

Iterative switching algorithm revisited for the Tresca-type problem. In this section we

adapt the above strategy to the Tresca-type problem (TP) given by{
−∆u+ u = f in Ω,

|∂nu| ≤ 1 and u∂nu = − |u| on Γ.
(TP)

Roughly speaking the algorithm is based on the fact that we need u = 0 or |∂nu| = 1 on Γ.

The main idea is to impose Neumann or Dirichlet boundary conditions on Γ and then to check if

the Tresca conditions are satisfied. Otherwise we change the Dirichlet boundary into a Neumann

boundary and conversely. More precisely we use the following strategy.

Step 1. We solve the following well-posed problem{
−∆ϕ0 + ϕ0 = f in Ω,

ϕ0 = 0 on Γ.

If |∂nϕ0| ≤ 1 on Γ, then ϕ0 is the solution to Problem (TP). Otherwise we pursue Step

2.

Step 2. If there exists Γ1
S−,N ⊂ Γ such that ∂nϕ0 < −1 and/or if there exists Γ1

S+,N ⊂ Γ

such that ∂nϕ0 > 1, we define Γ1
D := Γ\Γ1

S−,N ∪ Γ1
S+,N. Then we solve

−∆ϕ1 + ϕ1 = f in Ω,

ϕ1 = 0 on Γ1
D,

∂nϕ1 = −1 on Γ1
S−,N,

∂nϕ1 = 1 on Γ1
S+,N.

If |∂nϕ1| ≤ 1 on Γ1
D and ϕ1∂nϕ1 = − |ϕ1| on Γ1

S−,N ∪ Γ1
S+,N, then ϕ1 is the solution to

Problem (TP). Otherwise we pursue Step 3.

Step 3. If there exists Γ̃2
S−,N ⊂ Γ1

D such that ∂nϕ1 < −1 and/or if there exists Γ̃2
S+,N ⊂ Γ1

D

such that ∂nϕ1 > 1, we define Γ̃2
D := Γ1

D\Γ̃2
S−,N ∪ Γ̃2

S+,N. If there exists
˜̃Γ2
D ⊂ Γ1

S−,N such

that ϕ1∂nϕ1 ̸= − |ϕ1| (that is, ϕ1 < 0), we define ˜̃Γ2
S−,N := Γ1

S−,N\
˜̃Γ2
D, and if there

exists
˜̃̃
Γ2
D ⊂ Γ1

S+,N such that ϕ1∂nϕ1 ̸= − |ϕ1| (that is, ϕ1 > 0), we define ˜̃Γ2
S+,N :=
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Γ1
S+,N\

˜̃̃
Γ2
D. Then we define Γ2

D := Γ̃2
D ∪ ˜̃Γ2

D ∪
˜̃̃
Γ2
D, Γ

2
S−,N := Γ̃2

S−,N ∪ ˜̃Γ2
S−,N and Γ2

S+,N :=

Γ̃2
S+,N ∪ ˜̃Γ2

S+,N. Then we solve
−∆ϕ2 + ϕ2 = f in Ω,

ϕ2 = 0 on Γ2
D,

∂nϕ2 = −1 on Γ2
S−,N,

∂nϕ2 = 1 on Γ2
S+,N.

If |∂nϕ2| ≤ 1 on Γ2
D and ϕ2∂nϕ2 = − |ϕ2| on Γ2

S−,N ∪ Γ2
S+,N, then ϕ2 is the solution to

Problem (TP). Otherwise we repeat this step.

We emphasize that the proof of convergence of the switching algorithm given in [2] for the Signorini-

type problem cannot be easily adapted to the Tresca-type problem. Indeed this proof is based on

the strict decrease of the size of the Dirichlet boundary (where u = 0) and the strict growth of

the Neumann boundary (where ∂nu = 0). For the Tresca-type problem, the main obstacle comes

from the fact that there are two different Neumann boundaries (that is, ∂nu = 1 and ∂nu = −1)

and thus, to the best of our knowledge, one cannot conclude in a similar way. Hence the proof of

convergence of this algorithm for the Tresca-type problem, which is not the heart of the present

work, is postponed for a future work.

We conclude this paragraph by implementing the above algorithm on the example of Tresca-type

problem considered in Section 4 (for which the explicit expression of the exact solution u0 is known).

Figure 7 represents the exact solution on one hand, and the initial and approximated solutions

from the switching algorithm on the other hand. We obtain a H1-error equal to 0.00403978.

Final remarks on the implementation and on the stopping criterion. In order to numer-

ically solve the problems involved in the above switching algorithms, any finite elements method

can be used (note that these problems are standard, without any inequality or nonsmooth bound-

ary condition). In Section 4 we performed simulations using Freefem++ software (see [18]). Let us

mention that the above switching algorithms stop when all the boundary conditions are satisfied.

We can also add a criterion on the number of iterations. Indeed, in practice, we noticed that these

algorithms need only few iterations to converge. In our simulations we impose a maximal number

of iterations equal to 10.
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vanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser
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